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Abstract-Modal acoustic radiation impedance load on a spherical source vibrating with an arbi
trary, axisymmetric, time harmonic velocity distribution, while positioned concentrically within a
fluid sphere which is embedded in an infinite fluid-saturated poroelastic medium, is computed. This
configuration, which is a realistic idealization of sound projector (transducer) freely suspended in a
fluid-filled spherical cavity within a permeable surrounding formation, is of practical importance
with a multitude of possible applications in seismo-acoustics and noise control engineering. The
formulation utilizes Biot theory of sound propagation in elastic porous media along with the
appropriate wave field expansions and the pertinent boundary conditions to determine the resistive
and reactive components of model radiation impedances. Numerical example for spherical surface
excited in vibrational modes of various order (i.e., monopole, dipole, quadrupole, and multipole like
radiators) immersed in a water-filled cavity which is embedded within a water-saturated sandstone
surrounding formation is presented. Several limiting cases are discussed. Effects of porosity, frame
stiffness, source size and interface permeability condition on the impedance values are presented
and discussed. The presented formulation is equally adequate for situations in which the surrounding
formation consists offibrous materials, as in noise control engineering applications. © 1997 Elsevier
Science Ltd.

NOTATIONS

u
U

K,

A
We

P
P,
PH
PII,P12,P22
)., Q, R, M, fJ
s
p
c
p

average macroscopic frame displacement
average macroscopic fluid displacement
filtration displacement vector
average frame dilatation
average fluid dilatation
increment of fluid content
macroscopic stress tensor
macroscopic strain tensor
mean pore fluid pressure
first Lame coefficient for a "closed" system (i.e., for ~ = 0)
shear modulus of the bare skeletal frame
saturating fluid viscosity
pore volume fraction (porosity)
bulk modulus of the dry skeleton (i.e., for the "open" system, PP = 0)
bulk modulus of the material constituting the elastic matrix
bulk modulus of the saturating fluid
bulk modulus of the "closed" system
tortuosity (infinite frequency)
absolute (de) permeability of porous medium (zero frequency)
characterizes the permeability of the interface
viscous characteristic length
characteristic frequency of the porous medium
total mass density of the fluid-saturated material
density of the solid matrix material in a consolidated non-porous state
density of the saturating fluid
BioI's effective densities
elastic material constants for the solid-liquid aggregate
displacement vector of the cavity fluid
acoustic pressure in the cavity fluid
compressional phase velocity in the cavit)' fluid
density of the cavity fluid.
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I. INTRODUCTION

There has been a surpassing interest in the acoustics of fluid-saturated porous media due
to its significance in various technical and engineering processes ranging from geophysics,
ocean acoustics, architectural acoustics, noise control engineering and tunnel engineering
to biophysics and materials engineering. In particular there is an increasing demand to
study the propagation of elastic waves in granular media such as rock formations in
petroleum reservoirs and ocean bed sedimentary layers, and in fibrous media such as
biological tissues, polymer networks, and sound absorbent materials.

In dealing with acoustic problems of poroelastic media one may have to consider various
appropriate models. Gassmann (1951) presented the first concise model for harmonic plane
wave propagation in an infinite fluid-saturated porous solid. His treatment, however,
disregarded the relative viscous fluid/elastic solid motion which is known to be the main
cause of energy loss in the high frequency regime. Biot (1956a, b) approached the problem
in a more unified manner and formulated the appropriate constitutive equations and
equations of motion in poroelastic media. He predicted the existence of two types of
dilatational (compressional) waves along with one rotational (shear) wave. Biot's treatment
agrees with Gassmann's results in the low frequency range (White, 1983). Geertsma and
Smit (1961) and Deresiewicz and Rice (1962) employed Biot's complete dynamic equations
to study the plane interface wave reflection problems.

Recently the scientific groundwork for Biot's model is more firmly established through
several experimental validations leading to a rem:wed interest in the subject. The first
experimental observation of the fast and slow bulk waves (as predicted by Biot's theory)
was reported by Plana (1980). Subsequently, Berryman (1980) analyzed and confilmed
Plana's observations and concluded that the Biot's theory is a satisfactory model of wave
speeds and attenuation in poroelastic media.

The appropriate set of boundary conditions which should be satisfied when an interface
separates two poroelastic media was derived by Deresiewicz and Skalak (1963). Many
researchers have employed these conditions to produce the solution to Biot's equations of
motion for various scattering problems. While most of the investigations involve reflection
and transmission from a planar interface, comparatively little work has been done on
acoustic scattering or radiation from convex-shaped inclusions which is of prominent
importance in engineering and geophysics. By applying a boundary layer approximation
Mie et al. (1984) studied acoustic scattering by a Jluid-filled circular cavity within a fluid
infiltrated poroelastic medium. Berryman (1985) and Zimmerman (1993) have each
employed different analytical methods to examine scattering of plane compressional waves
by a spherical inclusion in an infinite poroelastic medium. In a later study, Kargl and Lim
(1993) formulated the scattering problem using a T-matrix approach.

Problems corresponding to sources immersed near a permeable interface are of great
practical importance with a multitude of possible applications in technical fields such as
seismic prospecting, reservoir seismics, ocean seismo-acoustics, noise control engineering,
and hydrology. Noting that most sound projector devices employed in seismo-acoustics are
generally of the expander or shaker type, a spherical source is naturally useful as a simplified
model of such transducers with roughly the same dimensions. Employing this idealization,
Poterasu (1993) investigated dynamic coupling effects for a pulsating source in a fluid-filled
cavity embedded within an elastic infinite media by the boundary element method. In doing
this, however, he made the unrealistic assumption for the surrounding formation to be
nonporous and nonpermeable.

The fluctuating acoustic pressure on the surface of a vibrating structure constitutes its
radiation loading. The radiation loading on a spherical surface excited in vibrational modes
of various orders (i.e., monopole, dipok, quadrupole, and multipole like radiators) is best
described through its acoustic radiation impedance. For an excellent review on this subject,
and presentation of modal acoustic impedance curves for a spherical source immersed in
an unbounded ideal compressible fluid, one should consider Junger and Feit (1972).

The present effort studies radiation loading on a spherical sound projector (transducer)
freely suspended in a fluid-filled spherical cavity embedded within a permeable surrounding
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formation consisting of fluid-infiltrated elastic porous solid. One very closely related prob
lem of interest, which can readily benefit from present study, is to investigate the vibratory
characteristics of the submerged transducer clamped to the cavity wall (see White, 1983, p.
230). The behaviour of such a system is similar to that of a vibrator on a halfspace, in that
the mathematical analysis should incorporate the effects of vibrator and fluid inertia,
radiation and material damping, and cavity surface and vibrator compliance. For a good
demonstration on such analysis the reader is referred to Geers and Hasheminejad (1991).
Section 2 contains the governing equations ofporoelastic:ity and the dispersion expressions
for phase velocities. In Section 3 the problem and the appropriate boundary conditions are
stated and the solution technique presented by Pao and Mow (1973), which involves the
solution of a truncated set of algebraic equations, is employed to obtained the impedance
relation. Finally, Section 4 discusses numerical implementation and results for the example
of a water-filled cavity in a water-saturated sandstone media and some limiting cases.

2. GOVERNING FIELD EQUATIONS

Before proceeding to analyze the full problem, we shall first briefly review highlights
of Biot's theory of poroelasticity. A re-examination of the main hypotheses of Biot's model
is unnecessary and the reader is directed to standard references on the subject (see, for
example, Allard, 1993, Bourbie et al., 1987). Denoting the average macroscopic dis
placement of the solid frame and the saturating fluid on the elementary macroscopic volume
(EMV) by the vectors u and U, respectively, the macroscopic stress tensor CTij and the mean
pore fluid pressure Pp are defined by (Bourbie el al., 1987)

where

(Jij = (Afe- (3Mf,)bij +2peij

PP = M(~ - (3e)

cPo (1/Ks - 1/KfT ) + l/Ks - 1/KG
Kf = cPo/Ko(1/Ks- I/Kjl)~+ 1/Ks(1/Ks -1/Ko)

M = I/(({3-cPo)/K,+cPo/K/I)

{3= 1-Ko /K,

e ij = (ui,j + u j ,J/2

~ = -V'w = -cPo(E-e)

e = V· U, E = V· U

(1)

(2)

in which w = cPo(U -u) is the filtration displacement vector, and a brief description for the
important parameters involved in this work is given at the beginning of the paper.

The equations of motion governing the displacements of the solid matrix and interstitial
liquid with dissipation taken into account are (Bourbie ·et al. 1987)

where

(A + 2J1.)VV 'u+QVV' U - J1.V x V xu = PI1 ii+P L2 U +b(ti- U)

QVV 'u+RVV' U = PI2ii+P22U -b(ti-U) (3)
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I, = Af+cPOM(cPo-2p)

Q = cPoM({3 -. cPo)

R=cP~M

P =o(l-cPo)Ps+cPoPtl

Pil = P+cPopp(IX-2)

Pl2 = cPopp(l -IX)

P22 = P- Pl1 -2Pl2 = IXcPOPtl

(4)

where the parameter b, which is. the viscous friction coefficient due to the relative fluid/solid
motion, is given as (Allard, 1993)

cP~1b = --F(w).
/(

(5)

The quantity F(w) is a viscosity correction factor which allows for the fact that effective
damping changes when the viscous skin depth .j2YJ!Pj;-;;; becomes smaller than the pore size
as the frequency increases beyond the characteristic frequency We = cPoYJ/PflKIX. Many
researchers have investigated the frequency dependence of Biot theory in terms of a fre
quency-dependent dynamic permeability/tortuosity. The interested reader is referred to
Johnson et at. (1994a) for a recent review. A very simple and fairly accurate model for
description of dynamic permeability is proposed by Johnson et at. (1987). Their equation
(3.3) states

{

41X2 /(2 p. W}I/2
F(w) = I-j--o-)~

YJNcPo
(6)

where A ::::: .J~ (Allard, 1993, Winkler et at., 1989) is a viscous characteristic length
which depends only on frame geometry and describes the sizes of dynamically connected
pores. Hereafter we shall assume harmonic time variations with e-/w

, dependence suppressed
for simplicity. Note that energy dissipation in the solid frame may also be readily incor
porated in Bioi's model by replacing the solid elastic parameters by appropriate complex
functions (Cremer, 1990).

Helmholtz decomposition theorem allows us to resolve the displacement fields as
superposition of longitudinal and transverse vector components

u=V¢+Vx~!J

U=YX+Vx~~. (7)

Substituting the above resolutions into Biots' field t:quations of motion (3), we obtain two
sets of coupled equations:

(8)

(9)

The above systems may be manipulated to yield Helmholtz equations (Bourbie et at. 1987) :

V2cPf;s + kl,cPt:s = a
V:!~+k?~ = 0 (10)

where kf' k" and k, which designate the complex wave numbers of the fast compressional,
slow compressional, and the elastic shear waves, respectively, are given as
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k2 _B+~C k?= _~C _
(,s - 2A P(Pn oi +jwb)

A = (A+2p)R-Q2

B = W2[P 1I R+ Pn(A+2p) -2PI2QJ +jWb(A+2p+2Q+ R)

C = W2[W2(P1IP22 -pi2)+jwpbJ,
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(11)

(12)

Employing eqns (8)-(11), with some manipulations, the scalar potentials cP, X, 8, and l/J
may be expressed as

where

cP = cPJ+cP,

X = PJ¢J+ PscPs

8 = (Xol/J

W2P12 -jwb
eto = -

W2P22 +jwb

(13)

(14)

The above review clearly points to the existence of three distinct modes of elastic wave
propagation in fluid-saturated porous-elastic medium: a predominantly frame-borne fast
wave which is coupled with a predominantly fluid-borne slow wave, along with one frame
borne shear wave which is decoupled from the other two modes,

The fluid contained in the spherical cavity is assumed to be inviscid and ideal com
pressible that cannot support shear stresses making the state of stress in the fluid purely
hydrostatic, Consequently the field equations may be expressed in terms of the velocity
potential of the cavity fluid as (Achenbach, 1976)

s = Vcp

P = -P1>

V 2 cp+k2 cp = 0 (15)

where k( = wlc) is the wave number for the dilatational wave, {J is the density, s is the
velocity vector, and p is the acoustic pressure in the inviscid fluid,

3, FIELD EXPANSIONS AND BOUNDARY CONDITIONS

The geometry and the coordinate system used are shown in Fig, 1, The problem can
be analyzed by means of the standard methods of the theory of mechanical vibrations, The
dynamics of the problem may be expressed in terms of four scalar potentials: one cor
responds to the compressional wave trapped in the inviscid fluid layer inside the spherical
cavity, the other three correspond to the transmitted fast and slow dilatational waves and
the transmitted shear wave which propagate outward into the infinite poroelastic medium,
Each of these waves can be represented in form of an infinite series whose unknown
coefficients are determined by imposing the proper boundary conditions.
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Fig. 1. Problem geometry.

Following our discussion on Helmholtz decomposition in preceding section, the com
pressional waves which are contained in the interior of the spherical cavity may be expressed
as

'XJ

r.p == I [D,JAkr) + E"hn (kr)] Pn (cos 0)
n=O

(16)

where in are spherical Bessel functions, hnare the spherical Hankel functions, p" are the
Legendre polynomials (Abramovitz and Stegun, 19(4), D n and E" are unknown scattering
coefficients. Similarly, the outgoing transmitted waves in the poroelastic medium exterior
to the cavity are expressed as

CN

¢r = I A"h,,(kfr)Ph(cos 0)
n=O

"C.

q), = I B"h" (k,r)Pn (cos 0)
n=O

::n

lj; = I C"h"(k,r)P ~ (cos 0)
n:::oO

(17)

where P ~ (cos 0)[ = - (djdO)P"(cos 0)] is the Legendre function.
Now considering the basic field equations in spherical coordinates with axial symmetry

(i.e., assuming no azimuthal dependence) the solid and liquid displacements in r- and 0
directions in terms of displacement potentials in the poroelastic media are (Achenbach,
1976)

aq> 1 alj; lj;
U =--+--+-clanO

r or r 00 r

OX 1 ae eu = -- + ---. + -ctanO
r or r ao r

1 a¢ 8lj; lj;
U(I =------

r ao or r

I aX ae e
U(I = ; ae - a; - -; . (18)

Expressions for the frame and liquid dilatations can be manipulated to yield
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e = V'U = V2 ¢ = V2 ¢/+ V2 ¢, = --kJcjJf-k~¢,

e = V'U = V2X= PrV2¢/+p,.v2¢S = -Ptk7¢r-p,k;¢s

2 1 °(08) 1 a(. a)
V = -;20r r~ a; + ~2 sin ~I ae Sill eae .
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(19)

(20)

Utilizing (1), (13), (18), and (19), pore fluid pressure, radial and tangential stress com
ponents are written as

where

a/: , = - ;:t+ ¢o{3M(1- Pt,,)

brs = {3+¢o(p/:,-I).

(21)

(22)

(23)

(24)

The boundary condition at the spherical surface (i.e., at r = aj) is the continuity of
normal velocity, thus first ofeqn (15) and eqn (16) yield

(25)

where Vn represents the modal radial velocity amplitude of the spherical surface (see
Fig. 1).

The appropriate boundary conditions which have to be satisfied at the cavity wall (i.e.,
at r = a2) to yield a unique solution of proposed problem are (Deresiewicz and Skalak,
1963, Bourbie et al., 1987) :

(1) Compatibility of normal stress in poroelastic media with the acoustic pressure in the
cavity fluid

(26a)

(2) Vanishing of tangential stress

(26b)

(3) Continuity of normal component of the filtration velocity

(26c)

(4) Consistency of the pressure drop and the normal component of filtration velocity (i.e.,
satisfaction of Darcy's law which governs the fluid flow across the interface)
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(26d)

where the parameter K s characterizes the permeability of the interface, i.e., the quality of
interconnection between two media. For an open interface, we expect zero pressure drop
(p = pp) and hence we let K, == cx;. To characterize a sealed interface (i.e., for w= 0) we
take K s = O.

Finally, the unknown scattering coefficients shall be determined by imposing the stated
boundary conditions. Employing expansions (16) and (17) in the field eqns (18)-(24), and
substituting obtained results into the boundary conditions (25) and (26), we acquire

{k} [aJIn(kjil2) + 2Ilh~(kja2)]} An + {k; [ashn(ksa2) + 2Ilh~(k,a2)]} Bn

+ {2Iln(n+~ [kth~(k,a2) - ~~ hn(kta2)]} Cna2 a2

+ {jwpjn(ka2)}Dn + {jwphn(ka2)}En = 0 (28)

{~: [~2 hn(k/az) -kfh~(k~2)]} An + {~ [:2 hn(k,az) -k,h~(k,az)]} Bn

+ J!:; ([2-n(n+ 1)]hn(k,a2) -a~k;h~(ktaz)}Cn = 0 (29)
a5.

{jWkfh~(k~2)[cP0(1- Ilf) -inAn+ {jWkJl~(k,a2)[cPo(l- Ils) - In Bn

+ {n(:: 1) jwhn(ktaz)[cPo(l- (Xo) -I]} c, + {-kj~(ka2)} Dn+ {- kh~(kaz)}En = 0 (30)

{jwcPokfh~(k/az)[1 - Ilj] - KsMb~}hn(kfa2)}An + {jwcPok,h~(ksaz)[I- Ilsl

- KsMbsk; hn(k,a2)} Bn+ {~(na: 1) jWcPo hn(kta2)[I- (XO]} Cn

+ {iWPKJn(kaz)} Dn+ {jwpK,hn(kaz)} En = 0 (31)

where n = 0, 1, 2, ... , except for eqn (29) where n == 1, 2, ....
The system of eqns (27)-(31) may beneficially be put in matrix form as

(32)

where

(33)

Fluid pressure on the vibrating spherical surface is determined from second of eqn (15) and
eqn (16) as

(34)

which can readily be put in matrix form as
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Using eqns (32) and (35), modal pressure may be stated as

where
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(35)

(36)

(37)

Finally, noting the structure of the vectors Uo and Um we identify the acoustic impedance
for modal vibrations of the spherical surface inside the cavity, Zm as the first element of the
"Z" matrix (see Hasheminejad and Geers, 1993). Moreover, modal acoustic impedance
can be expressed in terms of its resistive and reactive components as (see Junger and Feit,
1972)

(38)

4. NUMERICAL RESULTS

In order to illustrate the nature and behaviour of the solution, we consider a numerical
example in this section. Realizing the large number of parameters involved here, no attempt
is made to exhaustively evaluate the effect of varying each of them. The intent of the
collection of data presented here is merely to illustrate the kinds of results to be expected
from some representative and physically realistic choices of values for these parameters.
From these data some trends are noted and general conclusions made about the relative
importance of certain parameters. A FORTRAN program for computing Z = SR- ' was
constructed to calculate modal acoustic impedance values as functions of ka] = wade.
Accurate computations of spherical Bessel functions of complex argument were performed
with the subroutine SBESJH (Thompson and Barnett, 1987); their derivatives were com
puted by utilizing (1O.1.l9) and (10.1.22) in Abramovitz and Stegun (1964). All com
putations were performed in double precision on a Sun-Spark Classic workstation.

Noting the crowd of parameters which enter into the final expressions and keeping in
view the availability of numerical data, we shall confine our attention to a particular model.
Johnson et al. (I 994b) have experimentally determined the required input parameters to
calculate the basic acoustic properties of water-saturated Ridgefield Sandstone within the
context of Biot theory. These input parameter values, which are used in the calculations,
are compiled in Table 1.

Table l. Input parameter values in BioI's model

Parameter

4>0
rx
K (em')
p, (gjcm 3

)

K, (dyn/cm')
K o (dyn/cm2

)

/l (dynjcm')
Pfi (g/cm 3

)

Kfi (dyn!cm')
11 (g!cm . sec)
A (em)
OJ,.j2n (kHz) [calculated]

Water-,aturated sandstone

0.37
1.58

27.7 x 10-8

2.48
4.99 x 10"
5.24 X lOlG
3.26 x 1010

1.00
2.25 X lOW
0.01

19.4xlO-4

1.33
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Fig. 2. Modal acoustic impedance curves for (l2!a, = 20 cm!lO em (K, = 00. w,.a,!e = 0.56, other
parameters as in Tabk I).

Figures 2 and 3 each displays the inertial and the resistive components of the modal
acoustic impedance, for a radii ratio of a2/aj = 20 cmjlO em, and 200 cm/lOO em, respec
tively, with open interface condition (i.e., K, = (0) and basic material properties as given in
Table 1. Here we note the high frequency oscillations of modal impedance curves which is
due to boundary interference and reveberation eff,,:cts, as is discussed in detail by Hash
eminejad and Geers (1992).

Several computer program runs were made using various source and cavity sizes in
order to assess the effects of interface condition, porosity, and frame stiffness on modal
impedance results. It was concluded that the most pronounced overall effects occur for a
radii ratio near unity (i.e., small gap size). Figures 4-6 display such effects for the selected
radii ratio of a2/a] = 12 cmilO cm. The effect of interface condition on modal impedance
may be studied through the parameter 0 ~ K s < 00 which as explained before characterizes
the permeability of the interface. For simplicity we have only considered two limiting cases
of K s = 00 (fully open interface) and K s 0= 0 (completely sealed interface). The relevant
results are compared in Figs 4a and 4b. As expected, the modal impedance values increase
as the quality of interconnection weakens. Note the extremely high reactance value obtained
for the n = 0 ("breathing") mode in the sealed interface case (i.e., rna =
-180.64@ka j = 0.1).
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The influence of porosity on modal impedance curves is shown in Figs Sa and 5b. For
the reason ofclarity only two porosity values are examined, namely 4>0 = 0.27 and 4>0 = 0.47.
The related tortuosity and A values are obtained by scaling the experimental values given
in Table 1 according to the following approximations

et ~ l/.J4>0 (Berryman, 1982)

A ~ J8:J-K/4>0 (Winkler et al., 1989). (39)

Table 2 displays the input parameter values foret, and A which are utilized in numerical

Table 2. Estimated values for tortousity, characteristic viscous
length and frequency (note: values listed in the first row are

experimental. taken from Table I)

A w,

0.37
0.27
0.47

1.58
1.85
1.40

19.4 X 10- 4

24.7 X 10-4

16.2 X 10-4

8.36 X 103

5.18 X 103

12.02 X 103
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Fig. 5. (a) Influence of porosity Oil modal acoustic reactance values (K., = Xi, a,ia! = 12 cm/lO em,
w,.a!!c = 0.35, 0.80, other parameters as in Table I); (b) influence of porosity on modal acoustic

resistance values (K., = 00, a,ia, = 12 cm;1O em, w,a!!c = 0.35.0.80, other parameters as in Table 1).
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resistance values (K, = OC, a,la, = 12 cm/IO em, w,aj/c ,= 0.56, other parameters as in Table 1).
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Fig. 7. Modal impedance curves for the "all-fluid" medium approximation (K. = ex;, a2/a, = 12
cmjlO em. <Po 0= :x = I. K,. = J1 = rf "" 0).

computations. The main outcome is the increase in impedance values as the porosity
(tortuosity) decreases (increases). This result is readily conceivable, since as the porosity
decreases (tortuosity increases) we anticipate higher force opposing modal vibrations of
the spherical surface inside the cavity.

Figures 6a and 6b analyze the effect of frame stiffness for two K o/ K s ratios, namely
Ko/K, ~ 0 and KoIK, = 0.9. Increasing Ko/K, at constant porosity corresponds to the exis
tence of increasingly finer pore channels. Therefore here as the frame stiffens, the opposing
acoustic force grows which is the precisely expected outcome as displayed in the figures.
Finally, to check the validity of our work we consider the "all-fluid" surrounding medium
case (Bourbie et al., 1987), i.e., we make the computations for cPo = :x = I, and
Ko = f.l = IJ ~ 0 as shown in Fig. 7. Evidently, our results reduce to those for modal
vibrations of a spherical surface in an ideal infinite acoustic fluid (Junger and Feit, 1972).
This simply implies that when there is no impedance mismatch at the interface, we get no
wave reflections and hence no wall interference effects exist.

Clearly the overall trends observed, as discussed above, are somewhat anticipated.
What is most surprising is the general low frequency behaviour of n = 0 (breathing mode)
modal resistance curves displayed in the figures. Because acoustic resistance is directly
proportional to the radiated power, the notable low frequency values obtained for ro(w)
simply implies that the pulsating spherical source (i.e., the expander type transducer) is
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expected to be an efficient sound projector even at the low frequency end for the studied
configuration.

5. CONCLUSION

Modal acoustic impedance curves have been generated for a spherical radiator in a
fluid-filled spherical cavity embedded within an infinite poroelastic medium. These curves
are the product of an exact treatment of the fluid-structure interaction which involves
utilizing Biot's dynamic model and the appropriate boundary conditions of poroelasticity.
Having realized the large number of parameters involved, we present a collection of data
merely to illustrate the kinds of results to be expected from some representative and
physically realistic choices of values for these parameters. The numerical results reveal the
important effects of interface condition, porosity (tortuosity), and frame stiffness on the
computed modal acoustic impedance values. They also show that for the studied con
figuration the pulsating spherical source (i.e., an expander type transducer) is expected to
be an efficient sound projector even at the low frequency limit.

The studied configuration is a realistic idealization of a sound projector (transducer)
freely suspended in a fluid-filled spherical cavity within a permeable surrounding formation.
It is also noted that the presented formulation is equally adequate for situations in which
the surrounding formation consists of fibrous materials, as in noise control engineering
applications. Therefore, it is hoped that this work may initiate further studies, both theor
etical and observational, of acoustics in fluid-saturated elastic porous media. Extension of
present effort to determine radiation loading on a spherical source in a fluid-filled cylindrical
borehole within a permeable formation, which is of great interest in seismic prospecting
applications, is currently underway.
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